USING THE (n,2p) REACTION TO SEARCH FOR A PREEXISTING NUCLEAR Δ^{++} COMPONENT
M. Yuly
R. De Young
Department of Physics
Houghton College
Houghton, NY
1. Abstract

The $^{3}\text{He}(n,2p)^{2}n$ and the $^{4}\text{He}(n,2p)^{3}n$ cross-sections are being measured as a means to explore the Δ^{++} contribution to the nuclear wave function. The incident neutron beam ranged between 200 and 500 MeV. Scattered protons passed through magnetic spectrometers centered 45° to the right and left of the beam line. Each spectrometer consisted of a thin ΔE scintillator, a wire chamber, a permanent bending magnet, a wire chamber, and a detection barrier of three stacked scintillators.
2. Motivation

Traditional models of the nucleus that treat it as a non-relativistic system of nucleons do not completely explain the binding energies and the electromagnetic properties of nuclei. By the 1960s, theorists suggested the presence of a pre-existing $\Delta(1232)$ particle in the ground-state nuclear wave function and that this Δ resonance might be important in nuclear structure. The Δ^{++} has a mass of about 1232 MeV, spin and isospin of 3/2, and a +2e charge. To find a Δ^{++} component in the nucleus, the $^3\text{He}(n,2p)2n$ and the $^4\text{He}(n,2p)3n$ cross-sections are being measured at the Weapons Nuclear Research (WNR) facility at Los Alamos Nuclear Science Center (LANSCE) in Los Alamos, New Mexico.
There are two primary ways that the $^3\text{He}(n,2p)2n$ and the $^4\text{He}(n,2p)3n$ reactions may proceed. For a two proton nucleus, the reaction typically proceeds in two steps.
In a Δ^{++} nucleus, the reaction may proceed in one step. Each reaction has a distinguishable kinematic signature allowing the approximate Δ^{++} (n,2p) contribution to be determined.
There have been previous investigations of the Δ in the nucleus. Measurements such as those performed by Morris et al. (C.L. Morris et al., Phys. Lett. B419, 25 (1998)) have looked at the Δ⁻ component in the 3H, 3He, 6Lí, 7Lí, 12C, 13C, 90Zr, and 208Pb nuclei using the (π^+,π^-p) reaction. Like the $(n,2p)$ reaction, the (π^+,π^-p) reaction will generally proceed in two steps, but with a pre-existing Δ⁻ particle in the nucleus it may proceed in one step. These measurements indicate a 1-3% Δ⁻ component of the nuclear wave function. In 1996 and 1997 the 3He(n,2p)2n and the 4He(n,2p)3n reactions were studied by our group of collaborators from MIT and Los Alamos National Laboratory using a different set-up at the same facility. Not enough events were detected to determine a statistically meaningful value for a Δ⁺⁺ component. Together, the (π^+,π^-p) data and previous (n,2p) data support the idea of pre-existing Δ components in the nuclear wave function.
3. Experimental Apparatus

The experimental apparatus is designed to detect two protons that scatter in coincidence as the neutron beam interacts with the target.
A pulsed 800 MeV, 1 mA proton beam from the LANSCE linear proton accelerator (LINAC) strikes an unmoderated tungsten spallation target to produce a neutron beam with energies ranging from 0.1 MeV to over 600 MeV.

The fission chamber monitors the neutron flux on the target. The fission chamber is lined with a fissile isotope which breaks apart when struck by neutrons. The fission fragments ionize a gas as they pass through the chamber. The ionization electrons are attracted to a positively charged wire. The current varies with the number of neutrons, so neutron flux can be monitored.
The gaseous ^3He and ^4He targets are contained in conventional aluminum gas cylinders at 102.7 and 134.6 bar respectively.
The ΔE detectors are thin plastic scintillators used to reduce background events. The coincidence of a signal in the ΔE and a signal in the scintillator barrier most likely indicates a particle from the target. Protons passing through the plastic scintillator break apart molecular bonds. When these bonds recombine, energy in the form of light is given off. A photomultiplier tube at the end of the scintillators converts these tiny light pulses into an electrical signal pulse.
The wire chambers are filled with argon gas and contain two perpendicular long wires looped back and forth many times with a spacing of 8 mm so the x and y position can be found. As protons pass through these chambers, they ionize the gas. The released electrons drift toward the nearest wire loop and cause pulses at each end of the wire. Another wire chamber immediately follows the first to identify another point and thus the particle's trajectory. Wire chambers before and after the permanent magnet are used to find the change in the trajectory due to the magnet.
The permanent magnets bend the trajectories of the protons. The protons are charged particles, so magnetic force causes their paths to curve depending on their momenta.
The protons deposit all their energy in the plastic scintillator barriers. Each barrier has a stack of three 10.1 cm x 10.1 cm x 106.5 cm scintillators with photomultiplier tubes to convert the light pulses into electrical pulse signals. The size of the pulse is proportional to the energy deposited in the scintillator, so it acts as a check for the energy calculations using the wire chambers.
4. Electronics

The electronics read in and process the signals from the various detectors before sending them to the computer. A signal in one ΔE detector and in both scintillator barriers triggers the electronics. This ensures that the particles detected probably scattered from the target and are in coincidence with another particle. The trigger is vetoed if the beam or the CAMAC registers are off.
The outputs from the wire chambers are read into the computer using FERA modules. All other signals are read in using CAMAC modules. In the wire chambers, the electrons that have drifted to the wire cause pulses that go to each end of the wire. The time difference between when the pulses arrive at each end indicates which loop of wire the proton was near. The sum of the pulse times gives the drift time. Using this information from the vertical and the horizontal wires, the position of the proton can be found.
5. Wire Chamber Analysis

The wire chambers must be calibrated to determine the particle trajectories. First, the time differences between signals from each end of the delay line are analyzed to find the wire nearest the particle path (Figure 1). The drift distance to the wire can be found because it is proportional to the sum of the times from each end of the delay line. Pulses from the cathode wires are used to determine to which side of the wire the particle passed. Then, for both x or y planes in each chamber there are 4 ways to add or subtract the drift distance to the wire position (Figure 2).
Figure 1

A histogram of time differences showing the positions of the wires.
Figure 2
The four possible configurations for adding or subtracting the drift time from the wire position.
6. Conclusion

3He(n,2p)2n and 4He(n,2p)3n data were taken during 2000 and are being analyzed. Our part of the analysis is focused on interpreting the wire chamber information to calculate the trajectories of the protons before and after they pass through the permanent magnet. Ultimately, this analysis will enable a comparison with theoretical predictions and possibly a determination of the nuclear Δ^{++} component.