The particle telescope was constructed for an experiment in progress at Ohio University’s Edward’s Accelerator Laboratory. The experiment seeks to measure the $^{12}\text{C}(n, 2n)$ reaction cross section for neutron energies between 16 - 26 MeV. Before striking the ^{12}C activation sample, the neutrons first pass through a polyethylene foil, elastically scattering protons out of the foil. The number of scattered protons detected in the telescope can be correlated to the neutron fluence during activation of the ^{12}C sample. The telescope resolved the recoiling coincidence plot, providing a reliable monitor of neutron fluence.

A beam of 4.5 MeV ^3He ions struck a thin deuterated target in vacuum where 22.55 MeV protons were created via the $^2\text{H}($$^3\text{He}, p)^4\text{He}$ reaction. These protons entered atmosphere through a thin Kapton window located at 0°. The particle telescope was mounted on axis with the beam so that protons with the maximum energy would be detected. The proton energy was changed by inserting aluminum filters of various thickness (above). The detected protons formed an island on a two-dimensional coincidence plot that tracked the theoretical response function of the telescope (below).